Jupyter Notebook Binder

Integrate scRNA-seq datasets#

scRNA-seq data integration is the process of analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.

Here, weโ€™ll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.

Setup#

!lamin load test-scrna
Hide code cell output
๐Ÿ’ก found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
๐Ÿ’ก loaded instance: testuser1/test-scrna

import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
๐Ÿ’ก loaded instance: testuser1/test-scrna (lamindb 0.54.1)
ln.track()
๐Ÿ’ก notebook imports: anndata==0.9.2 lamindb==0.54.1 lnschema_bionty==0.31.2
โ— record with similar name exist! did you mean to load it?
id __ratio__
name
scRNA-seq Nv48yAceNSh8z8 90.0
๐Ÿ’ก Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-09-22 18:44:51, created_by_id='DzTjkKse')
๐Ÿ’ก Run(id='cDadTpYy2vMW7XBYQlb0', run_at=2023-09-22 18:44:51, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')

Access #

Query files by provenance metadata#

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("scrna")
id __ratio__
name
Integrate scRNA-seq datasets agayZTonayqAz8 90.0
scRNA-seq Nv48yAceNSh8z8 90.0
transform = ln.Transform.filter(id="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
GzA3KMdHzowOYsClkbvy yNdwkjSP None .h5ad AnnData Conde22 None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 Nv39dIk0xeRfAOZAwfvB None 2023-09-22 18:44:21 DzTjkKse
D4Soc2iFauHfymG956ss yNdwkjSP None .h5ad AnnData 10x reference pbmc68k None 660792 a2V0IgOjMRHsCeZH169UOQ md5 Nv48yAceNSh8z8 Nv39dIk0xeRfAOZAwfvB None 2023-09-22 18:44:45 DzTjkKse

Query files based on biological metadata#

assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
    experimental_factors=assays.single_cell_rna_sequencing,
    species=species.human,
    cell_types=cell_types.gamma_delta_t_cell,
)
query.df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
D4Soc2iFauHfymG956ss yNdwkjSP None .h5ad AnnData 10x reference pbmc68k None 660792 a2V0IgOjMRHsCeZH169UOQ md5 Nv48yAceNSh8z8 Nv39dIk0xeRfAOZAwfvB None 2023-09-22 18:44:45 DzTjkKse
GzA3KMdHzowOYsClkbvy yNdwkjSP None .h5ad AnnData Conde22 None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 Nv39dIk0xeRfAOZAwfvB None 2023-09-22 18:44:21 DzTjkKse

Transform #

Compare gene sets#

Get file objects:

query = ln.File.filter()
file1, file2 = query.list()
file1.describe()
File(id='GzA3KMdHzowOYsClkbvy', suffix='.h5ad', accessor='AnnData', description='Conde22', size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', updated_at=2023-09-22 18:44:21)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(id='yNdwkjSP', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-22 18:43:43, created_by_id='DzTjkKse')
  ๐Ÿ“” transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-09-22 18:44:45, created_by_id='DzTjkKse')
  ๐Ÿ‘ฃ run: Run(id='Nv39dIk0xeRfAOZAwfvB', run_at=2023-09-22 18:43:45, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
  ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-22 18:43:43)
Features:
  var: FeatureSet(id='2gQIre5ht93RP9Br7AxJ', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-09-22 18:44:16, modality_id='YVd1fHWO', created_by_id='DzTjkKse')
    'LINC01088', 'AP2S1', 'ADSL', 'USP16', 'None', 'None', 'SCAT2', 'ZNF45-AS1', 'LINC02132', 'XIRP2-AS1', ...
  obs: FeatureSet(id='ACQDyVarceSpQOe20uFE', n=4, registry='core.Feature', hash='Pku8H0niKZ8uYnQMyx1J', updated_at=2023-09-22 18:44:21, modality_id='zaCpJM7g', created_by_id='DzTjkKse')
    ๐Ÿ”— tissue (17, bionty.Tissue): 'caecum', 'bone marrow', 'lung', 'thymus', 'liver', 'mesenteric lymph node', 'lamina propria', 'jejunal epithelium', 'duodenum', 'thoracic lymph node', ...
    ๐Ÿ”— donor (12, core.ULabel): '582C', 'A35', 'D503', 'A29', 'A52', '640C', 'A31', 'D496', '621B', 'A36', ...
    ๐Ÿ”— cell_type (32, bionty.CellType): 'gamma-delta T cell', 'mast cell', 'non-classical monocyte', 'plasmablast', 'megakaryocyte', 'CD8-positive, alpha-beta memory T cell, CD45RO-positive', 'mucosal invariant T cell', 'plasmacytoid dendritic cell', 'progenitor cell', 'CD16-positive, CD56-dim natural killer cell, human', ...
    ๐Ÿ”— assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v1', '10x 5' v2', '10x 3' v3'
Labels:
  ๐Ÿท๏ธ species (1, bionty.Species): 'human'
  ๐Ÿท๏ธ tissues (17, bionty.Tissue): 'caecum', 'bone marrow', 'lung', 'thymus', 'liver', 'mesenteric lymph node', 'lamina propria', 'jejunal epithelium', 'duodenum', 'thoracic lymph node', ...
  ๐Ÿท๏ธ cell_types (32, bionty.CellType): 'gamma-delta T cell', 'mast cell', 'non-classical monocyte', 'plasmablast', 'megakaryocyte', 'CD8-positive, alpha-beta memory T cell, CD45RO-positive', 'mucosal invariant T cell', 'plasmacytoid dendritic cell', 'progenitor cell', 'CD16-positive, CD56-dim natural killer cell, human', ...
  ๐Ÿท๏ธ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v1', '10x 5' v2', '10x 3' v3'
  ๐Ÿท๏ธ ulabels (12, core.ULabel): '582C', 'A35', 'D503', 'A29', 'A52', '640C', 'A31', 'D496', '621B', 'A36', ...
file1.view_flow()
https://d33wubrfki0l68.cloudfront.net/19c1097ba12e0518f8d55ed30d183c385d3a10e4/54bc7/_images/753347f22dfa119b32ae4ed51b67164d4d96fdad70fc94171a706fc5cd0b2852.svg
file2.describe()
File(id='D4Soc2iFauHfymG956ss', suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', size=660792, hash='a2V0IgOjMRHsCeZH169UOQ', hash_type='md5', updated_at=2023-09-22 18:44:45)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(id='yNdwkjSP', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-22 18:43:43, created_by_id='DzTjkKse')
  ๐Ÿ“” transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-09-22 18:44:45, created_by_id='DzTjkKse')
  ๐Ÿ‘ฃ run: Run(id='Nv39dIk0xeRfAOZAwfvB', run_at=2023-09-22 18:43:45, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
  ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-22 18:43:43)
Features:
  var: FeatureSet(id='GglELLiZwTYIyev6GwOp', n=754, type='number', registry='bionty.Gene', hash='WMDxN7253SdzGwmznV5d', updated_at=2023-09-22 18:44:45, modality_id='YVd1fHWO', created_by_id='DzTjkKse')
    'CYTL1', 'PSMC3', 'AP2S1', 'RHOC', 'PDAP1', 'TAGLN2', 'LBH', 'ADSL', 'CCL4', 'PLAC8', ...
  obs: FeatureSet(id='tfrfeotun53IO4o0g2Pj', n=1, registry='core.Feature', hash='k3ON0Ea-SwSaTVbRu7kE', updated_at=2023-09-22 18:44:45, modality_id='zaCpJM7g', created_by_id='DzTjkKse')
    ๐Ÿ”— cell_type (9, bionty.CellType): 'gamma-delta T cell', 'cytotoxic T cell', 'CD4-positive, alpha-beta T cell', 'CD24-positive, CD4 single-positive thymocyte', 'B cell, CD19-positive', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'dendritic cell', 'CD16-positive, CD56-dim natural killer cell, human', 'monocyte'
  external: FeatureSet(id='l8GZYinuhuSSFpV55ch4', n=2, registry='core.Feature', hash='2DlkyLpMca3LGwfc7E2N', updated_at=2023-09-22 18:44:46, modality_id='zaCpJM7g', created_by_id='DzTjkKse')
    ๐Ÿ”— species (1, bionty.Species): 'human'
    ๐Ÿ”— assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
Labels:
  ๐Ÿท๏ธ species (1, bionty.Species): 'human'
  ๐Ÿท๏ธ cell_types (9, bionty.CellType): 'gamma-delta T cell', 'cytotoxic T cell', 'CD4-positive, alpha-beta T cell', 'CD24-positive, CD4 single-positive thymocyte', 'B cell, CD19-positive', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'dendritic cell', 'CD16-positive, CD56-dim natural killer cell, human', 'monocyte'
  ๐Ÿท๏ธ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
file2.view_flow()
https://d33wubrfki0l68.cloudfront.net/4cc828fddff5fe12146dbd393170a59c3258b2ca/b0fd7/_images/3072b2e282ce6632dad33b00c867fe6a830c4dceb91e26d3e833f9d71fe04f0c.svg

Load files into memory:

file1_adata = file1.load()
file2_adata = file2.load()

Here we compute shared genes without loading files:

file1_genes = file1.features["var"]
file2_genes = file2.features["var"]

shared_genes = file1_genes & file2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['AP2S1',
 'ADSL',
 'NIFK',
 'LYL1',
 'UPP1',
 'AHSA1',
 'JOSD2',
 'ERP29',
 'GYPC',
 'NAP1L1']

Compare cell types#

file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()

shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['gamma-delta T cell', 'CD16-positive, CD56-dim natural killer cell, human']

We can now subset the two datasets by shared cell types:

file1_adata_subset = file1_adata[
    file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]

file2_adata_subset = file2_adata[
    file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]

Concatenate subsetted datasets:

adata_concat = ad.concat(
    [file1_adata_subset, file2_adata_subset],
    label="file",
    keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร— n_vars = 187 ร— 749
    obs: 'cell_type', 'file'
    obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type                                           file                 
CD16-positive, CD56-dim natural killer cell, human  Conde22                  114
gamma-delta T cell                                  Conde22                   66
                                                    10x reference pbmc68k      4
CD16-positive, CD56-dim natural killer cell, human  10x reference pbmc68k      3
dtype: int64
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
Hide code cell output
๐Ÿ’ก deleting instance testuser1/test-scrna
โœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
โœ…     instance cache deleted
โœ…     deleted '.lndb' sqlite file
โ—     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna