Query & analyze#

import lamindb as ln
import lnschema_bionty as lb

lb.settings.species = "human"
💡 loaded instance: testuser1/test-flow (lamindb 0.54.1)
ln.track()
💡 notebook imports: anndata==0.9.2 lamindb==0.54.1 lnschema_bionty==0.31.2 scanpy==1.9.5
💡 Transform(id='wukchS8V976Uz8', name='Query & analyze', short_name='facs2', version='0', type=notebook, updated_at=2023-09-22 18:45:48, created_by_id='DzTjkKse')
💡 Run(id='7av9RFYVfawKjJFsXBDv', run_at=2023-09-22 18:45:48, transform_id='wukchS8V976Uz8', created_by_id='DzTjkKse')

Inspect the CellMarker registry #

Inspect your aggregated cell marker registry:

lb.CellMarker.filter().df()
name synonyms gene_symbol ncbi_gene_id uniprotkb_id species_id bionty_source_id updated_at created_by_id
id
k0zGbSgZEX3q HLADR HLA‐DR|HLA-DR|HLA DR None None None uHJU vwab 2023-09-22 18:45:32 DzTjkKse
sYcK7uoWCtco Ccr7 CCR7 1236 P32248 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
fpPkjlGv15C9 Ccr6 CCR6 1235 P51684 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
0vAls2cmLKWq ICOS ICOS 29851 Q53QY6 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
4uiPHmCPV5i1 CXCR5 CXCR5 643 A0N0R2 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
0qCmUijBeByY CD94 KLRD1 3824 Q13241 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
a624IeIqbchl CD45RA None None None uHJU vwab 2023-09-22 18:45:32 DzTjkKse
ljp5UfCF9HCi TCRgd TCRGAMMADELTA|TCRγδ None None None uHJU vwab 2023-09-22 18:45:32 DzTjkKse
lRZYuH929QDw CD85j None None None uHJU vwab 2023-09-22 18:45:32 DzTjkKse
8OhpfB7wwV32 Cd19 CD19 930 P15391 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
a4hvNp34IYP0 CD3 None None None uHJU vwab 2023-09-22 18:45:32 DzTjkKse
0evamYEdmaoY Igd None None None uHJU vwab 2023-09-22 18:45:32 DzTjkKse
agQD0dEzuoNA CXCR3 CXCR3 2833 P49682 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
h4rkCALR5WfU CD56 NCAM1 4684 P13591 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
L0WKZ3fufq0J CD11c ITGAX 3687 P20702 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
roEbL8zuLC5k Cd14 CD14 4695 O43678 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
CLFUvJpioHoA CD28 CD28 940 B4E0L1 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
n40112OuX7Cq CD123 IL3RA 3563 P26951 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
2VeZenLi2dj5 PD1 PID1|PD-1|PD 1 PDCD1 5133 A0A0M3M0G7 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
L0m6f7FPiDeg CD86 CD86 942 A8K632 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
N2F6Qv9CxJch CD11B ITGAM 3684 P11215 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
Nb2sscq9cBcB CD57 B3GAT1 27087 Q9P2W7 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
CR7DAHxybgyi CD38 CD38 952 B4E006 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
c3dZKHFOdllB CD33 CD33 945 P20138 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
YA5Ezh6SAy10 DNA1 None None None uHJU vwab 2023-09-22 18:45:32 DzTjkKse
bspnQ0igku6c CD16 FCGR3A 2215 O75015 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
cFJEI6e6wml3 CD20 MS4A1 931 A0A024R507 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
yCyTIVxZkIUz DNA2 DNA2 1763 P51530 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
ttBc0Fs01sYk CD8 CD8A 925 P01732 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
hVNEgxlcDV10 CD127 IL7R 3575 P16871 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
gEfe8qTsIHl0 CD24 CD24 100133941 B6EC88 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
HEK41hvaIazP Cd4 CD4 920 B4DT49 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
4EojtgN0CjBH CD161 KLRB1 3820 Q12918 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
uThe3c0V3d4i CD27 CD27 939 P26842 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
50v4SaR2m5zQ CD25 IL2RA 3559 P01589 uHJU vwab 2023-09-22 18:45:32 DzTjkKse
XvpJ6oL3SG7w CD45RO None None None uHJU vwab 2023-09-22 18:45:44 DzTjkKse
Qa4ozz9tyesQ Ki67 Ki-67|KI 67 None None None uHJU vwab 2023-09-22 18:45:44 DzTjkKse
UMsp5g0fgMwY CCR5 CCR5 1234 P51681 uHJU vwab 2023-09-22 18:45:44 DzTjkKse

Search for a marker (synonyms aware):

lb.CellMarker.search("PD-1").head(2)
id synonyms __ratio__
name
PD1 2VeZenLi2dj5 PID1|PD-1|PD 1 100.0
Cd14 roEbL8zuLC5k 50.0

Look up markers with auto-complete:

markers = lb.CellMarker.lookup()

markers.cd14
CellMarker(id='roEbL8zuLC5k', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2023-09-22 18:45:32, species_id='uHJU', bionty_source_id='vwab', created_by_id='DzTjkKse')

Query files by markers #

Query panels and datasets based on markers, e.g., which datasets have 'CD14' in the flow panel:

panels_with_cd14 = ln.FeatureSet.filter(cell_markers=markers.cd14).all()
ln.File.filter(feature_sets__in=panels_with_cd14).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
CvTtSi7dfBfI3a9sOoc4 6o0SZiBV None .h5ad AnnData Flow cytometry file 2 None 6837528 t6plg-pXZMxqmQN9naNeuw md5 SmQmhrhigFPLz8 sdkqkslifGqV4CQWCsZ9 None 2023-09-22 18:45:44 DzTjkKse
bvBHOP5XnqkGPvDRmQlk 6o0SZiBV None .h5ad AnnData Alpert19 None 33369696 Piw2n0vdnoNoAV7ZxgsW-g md5 OWuTtS4SAponz8 ZigRiMxLUv91mJc88S2a None 2023-09-22 18:45:36 DzTjkKse

Access registries:

features = ln.Feature.lookup()
efs = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()

Find shared cell markers between two files:

files = ln.File.filter(feature_sets__in=panels_with_cd14, species=species.human).list()
file1, file2 = files[0], files[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['CD28', 'CD3', 'Cd19', 'CD127', 'CD27', 'Ccr7', 'Cd14', 'Cd4', 'CD8', 'CD57']

Load files into memory and concatenate:

adata1 = file1.load()
adata2 = file2.load()
import anndata as ad
adata = ad.concat(
    [adata1, adata2],
    label="file",
    keys=[file1.description, file2.description],
)
adata
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1838: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.
  utils.warn_names_duplicates("obs")
AnnData object with n_obs × n_vars = 231130 × 10
    obs: 'file'
import scanpy as sc

sc.pp.pca(adata)
sc.pl.pca(adata, color=markers.cd14.name)
https://d33wubrfki0l68.cloudfront.net/f2f0ec81a03c6e5169978bbedc09dc54df80ece7/2eec5/_images/198fddd56be97e099c36c7b595cee1eb76b1dd2e6ebb642c777fe5756f62fb60.png

Create a concatenated dataset#

dataset = ln.Dataset(adata, name="Aggregated dataset")

dataset.save()

dataset.view_flow()
https://d33wubrfki0l68.cloudfront.net/0376b72faa67116c051d3e0b131f2e3e01746a77/ec387/_images/2346ba105522cb43516552d691f852bf10d9eef40bd70e6d3d0e4a3bd33ab1c5.svg
# clean up test instance
!lamin delete --force test-flow
!rm -r test-flow
💡 deleting instance testuser1/test-flow
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-flow.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-flow